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Abstract 

Simple inspection of the reduced form of a unit cell can 
fail to detect the correct lattice symmetry, because of 
the effects of measurement errors, computer rounding 
errors and uncertainties in interpretation of almost 
equal numbers. A procedure which is insensitive to 
these effects consists of the generation of a list of lattice 
vectors sorted on length, together with angles between 
pairs of them. The list includes the edges, face 
diagonals and body diagonals of the reduced cell, and 
the sums and differences of any of these which are 
similar in length. The correct unit cell is easily 
recognized in the vector list. 

Introduction 

The determination of the unit cell is an essential first 
step in a crystal structure determination, once a 
suitable single crystal has been obtained. With the 
development of computer-controlled diffractometers, 
this process has become progressively automated. On 
many machines it is now possible to mount and centre 
a crystal, and then leave the control software to locate 
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reflexions and determine a unit cell without any human 
intervention. That such a use of automatic procedures 
can lead to the selection of unsuitable unit cells has 
been recently demonstrated (Marsh & Schomaker, 
1979; Ilsley, Albright, Anderson, Glick & Oliver, 
1980). Problems arise particularly when the cell is 
centred or has a very long axis. 

Mighell & Rodgers (1980) have proposed that unit 
cells should be checked routinely by reduction pro- 
cedures, and the correct Bravais l~ttice type deduced 
from the form of the reduced cell. The use of automatic 
procedures for the recognition and interpretation of the 
reduced form is, however, dangerous because of the 
effects of errors in the unit-cell parameters, rounding 
errors in calculations and the question of equality or 
inequality of computed non-integral numbers (Ilsley et 
al., 1980). Small changes in cell dimensions can lead to 
completely different results for the reduced cell in 
special cases (Andrews, Bernstein & Pelletier, 1980), 
making interpretation of the reduced form difficult. 

For this reason, we have devised a procedure for 
checking a unit cell by performing a reduction to a 
standard form and then generating a list of selected 
lattice vectors together with the angles between pairs of 
them. This method is insensitive to the problems of 
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imprecise cell parameters and questions of in- 
terpretation, and it is easier for the user to recognize the 
conventional unit cell from the vector list than by direct 
inspection of the reduced form. 

It should be noted that, although the lattice metric 
symmetry can never be lower than the true symmetry 
of the crystal structure, it can be higher. Such 
pseudosymmetry is very common in some classes of 
materials. Any cell determination procedure based 
purely on the g e o m e t r y  of diffraction will fail to detect 
the difference between metric and crystal symmetry in 
such cases. The Laue symmetry must be subsequently 
investigated by comparison of supposedly equal 
intensi t ies .  

Cell reduction 

We choose the Niggli reduction, because it gives a 
unique result and is well documented [ In terna t iona l  
Tables  f o r  X - r a y  Crys ta l l ography  (1969) ,  pp. 530-535; 
Santoro & Mighell, 1970; Gruber, 1973]. The algo- 
rithm given by Kfiv~, & Gruber (1976) is compact and 
convenient. For  each step of the algorithm, as well as 
making the required changes to the parameters A, B, C, 

r /and ~, we also generate a 3 × 3 transformation 
matrix describing the new axial vectors in terms of the 
old, and accumulate these matrices by successive 
multiplications, so that the overall transformation 
matrix [ I n t e r n a t i o n a l  Tables  f o r  X - r a y  
C r y s t a l l o g r a p h y  (1969), pp. 15-21] can be printed 
together with the reduced cell when the reduction 
procedure is complete. A preliminary transformation 
must also be made if the original lattice is non- 
primitive. The required matrices are given in Table 1. 

Table 1. T r a n s f o r m a t i o n  matr ices  correspond ing  to 
each s tep o f  the cell  reduct ion  a lgor i thm 

Lattice Matrix 

., ~ o o o ~ o ½ ½ ½ 
R* ~ ~ q -~ ~ ~ -~ -q 
F ½ o ½ ½ ½ o o ½ ½ 
A 1 0 0 0 1 0 0 ½ ½ 
B ½ 0 ½ o 1 o 0 o 1 
C 1 0 0 ½ ½ 0 0 0 1 

Step~" Matrix 

1 0 1 O 1 0 0 0 0 - 1  
2 - 1  0 0 0 0 I 0 1 0 
3,4qt xs(O 0 0 0 xs(q) 0 0 0 xs(O 
5 1 0 0 0 l 0 0 s ( ~  1 
6 1 0 0 0 1 0 s (17) 0 1 
7 1 0 0 s(O 1 0 0 0 1 
8 1 0 0 0 1 0 1 1 I 

*Rhombohedra l  on 'obverse hexagonal axes; rhombohedral 
axes are primitive. 

t The steps of the Kfiv~ & Gruber (1976) algorithm. 
:~ s ( ~  means the sign of  ~ (+ 1 or - 1); x = s(~rK). 

Selection of  lattice vectors 

From the reduced cell, a list of lattice vectors r is 
generated, from which the correct Bravais lattice can 
easily be recognized. Firstly, we generate vectors for 
the three edges, the six face diagonals and the four 
body diagonals of the reduced cell, and sort them in 
order of increasing length. 

The list is examined for vectors with approximately 
equal lengths. If three such are found, and if r 1 . r 2, r 2 . r 3 
and r3.r I are all approximately equal, the four 
additional vectors r 1 + r 2 + r3, r I - -  r2, r 2 - -  r a, and r 3 - 
rl are generated and stored. (This is particularly useful 
for rhombohedral cells with c >> a on hexagonal axes.) 
For all pairs of vectors with almost equal lengths which 
are not members of such triples, r~ + r 2 and r 1 - -  r 2 are 
generated and stored. The generated vectors are then 
added to the original list of thirteen, which is sorted 
again. 

The output for each vector consists of its length, its 
components in terms of the edges of both the reduced 
and original unit cells, and the angles between it and all 
previous vectors in the list. Angles between 89 and 91 o 
are summarized in an extra table to facilitate the 
recognition of orthogonal axes. If three vectors are 
subsequently chosen to describe a cell, the trans- 
formation matrix required to generate this cell from the 
reduced or from the original cell has the relevant vector 
components as its rows. 

Because the cell reduction is only a means to an end, 
the magnitude of the tolerance which is allowed for the 
difference of two 'equal' numbers is not important in 
the reduction step. A generous tolerance for differences 
in vector lengths and scalar products in the vector 
generation stage is recommended, to ensure that all 
potentially interesting vectors are found; the price paid 
for this is a little extra computing time and output. 

Application 

The method described here forms a part of the 
four-circle diffractometer control software in our 
laboratory as well as being available as a stand-alone 
program. Unit cells determined on the diffractometer 
can thus be routinely checked for higher symmetry. 

We have tested the method with the cells reported by 
Marsh & Schomaker (1979) and by Ilsley et al. (1980) 
(parameters both before and after refinement). In each 
case, the C-centred monoclinic cell was easily 
recognized. Table 2 gives the results for the unrefined 
cell of Ilsley et al. (1980). Although the automatic 
recognition of the C-centred monoclinic cell from the 
reduced form fails unless generous tolerance limits are 
allowed, the symmetry axis stands out clearly in the list. 

The method also helps in resolving some of the 
problems to which Santoro, Mighell & Rodgers (1980) 
have applied their B-matrix algorithm. Thus, for 
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Table 2. An example of  a vector list 

The initial cell is primitive. The correct cell is C-centred monoclinic, 
with a = 15.932, b = 15-388, c = 9.494 A, B = 93.95 ° after 
refinement (Ilsley et al., 1980). The monoclinic axes are the 
vectors 9, 8 and 1 respectively. 

lnitialcell: 14.166 11.088 9.480 93.25 128.94 89-72 
Reduced cell: 9.480 11.033 11.088 87.57 86.75 87.00 

Niggli matrix: 
89.8704 121.7379 122.9437 
5.1907 5.9589 5.4664 

Transformation matrix, initial to reduced cell: 

0.00 
- I  .00 

0.00 

n 

1" 
2: 

87.00 
3: 

86.75 
4: 

51.06 
5: 

128.64 
6: 

47.61 
7: 

47.60 
8: 

90.19 
9: 

85.67 
10: 

117.46 
11: 

58.37 
12: 

58.09 
116.46 

13: 
56.14 
73-21 

14: 
41.89 
66.85 

15: 
38.30 
65.85 

0.00 - I . 00  
0.00 - I . 00  
1.00 0.00 

U 13 W U t O r W t 

1 0 0 0 0 --1 
0 1 0 - 1  0 - 1  

0 0 1 0 1 0 
87.57 

1 - 1  0 1 0 0 
138.06 89.72 

- l  0 l 0 l 1 
90.10 41.89 114.62 

l l 0 - l  0 - 2  
39.39 86.13 98.67 113.46 

l 0 1 0 l - l  
86.31 39.15 66.36 81.05 61.56 

0 1 -1  - I  -1  -1  
46.36 133.93 122.67 122.72 59-45 

0 1 1 - I  1 -1 
43.92 43.65 120.70 58.96 54.50 

- 1  1 1 - 1  1 0 
52.16 52.12 141.84 37.94 80-75 

1 1 --1 --I --I --2 
52.04 124.11 97.36 142.14 37.98 

1 - 1  1 1 1 0 
123.94 51.78 37.94 82.50 94.42 

1 1 1 --1 1 --2 
51.27 50.91 96.57 83.07 35.23 
72.67 

2 --1 --1 l -1  --1 
116.15 116.07 32.70 147.32 81.54 
66.99 98.03 

2 1 1 --1 1 --3 
60.90 60.56 81.58 98.07 30.87 
63.33 17.84 80.19 

length 

9.480 
11.033 

11.088 

14.166 

14.174 

14.918 

14.991 

15.307 
121.02 

15.971 
54.34 90.28 

17.947 
80.65 90.15 31.78 

17.977 
94.77 31.82 87.96 104.20 

18.032 
37.63 148.28 87.49 103.90 

19.178 
35.04 90.33 29.53 61.32 

23.850 
81.62 89-97 127.56 159.35 

25.695 
30.70 90.32 47.37 79.16 

Table of right-angles: 

1 : 8  
2 : 5  
3 : 4  
4 : 3  
5 : 2  
8- 1 9 10 13 14 15 
9 : 8  

10: 8 
13: 8 
14: 8 
15: 8 

example, in the case of  condelphine hydroiodide 
(DeCamp,  1976), two vectors of  almost equal length 
appear in the output list, corresponding to the two 
possible a axes. Application to the monoclinic cell of 
Rb2Pb(MnO2) 2 clearly demonstrates the'close relation- 
ship to the rhombohedral cell of  K2Pb(SO4)2; more 
significantly, the danger of  assigning C-centred mono- 
clinic cells to crystals which really are rhombohedral is 
obviated by use of  the vector-generation method, 
particularly when the hexagonal c axis is very long; 
here, reduction alone can fail to s h o w  up the higher 
symmetry if the monoclinic cell parameters are not 
very precise. 

The routine use of  this or a similar method both 
during structure determination and by referees or 
editors of  crystal structure reports would help to 
prevent the appearance of  incorrect unit cells in the 
literature. 

This method contains, among others, ideas 
developed from those embodied in programs by Drs R. 
Taylor and J. E. Davies. 
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